INTRODUCTION

A wide range of risk & protective factors have been implicated in development of eating disorders (EDs)

However, much of this research has proceeded in a piecemeal fashion.

The Cross Cultural Risk Factor Questionnaire (CCQ), an extensive measure of risk/protective factors, provides a more comprehensive test of the key drivers of ED onset.

There are also challenges in modelling as the number of predictors necessitates larger sample sizes to achieve suitable power & also carries risk of multicollinearity.

These characteristics (large number of variables, possible instability of results) are suitable grounds for machine learning (ML) approaches to ascertain the key risk factors for ED onset.

METHODS

Participants

* 626 ED patients (333 AN, 255 BN, 38 other ED)
* 776 controls.

Measures

* CCQ, which assesses a range of risk factors
* All risk factors were asked retrospectively < age 12 yrs

RESULTS

Selected indicators non-ED vs ED (excluding diagnosis predictor)

1.) Body dissatisfaction (BD) influenced eating (BD_inf)
2.) Family relation influenced eating (Fam_inf)
3.) School-work at school (Sch_12).

DISCUSSION

We found very high accuracy for the ED versus control models for all 3 statistical approaches (with Decision Tree most accurate and most parsimonious).

Our findings provide important insights into aetiological models of EDs using novel statistical approaches with the aim of improving prevention and intervention for EDs.

Further confirmatory studies are needed to test these exploratory hypotheses with rigorous prospective designs.

OBJECTIVES

To compare 3 different statistical approaches to gain greater insight into the key risk/protective predictors for ED onset:

1.) A standard logistic regression with all factors entered simultaneously and retained in the model;
2.) A Least Absolute Shrinkage and Selection Operator (LASSO) regression approach, which enters all factors simultaneously, but shrinks small risk factor contributions to zero – this ML approach seeks to balance parsimony with overall model performance & is equipped to handle concerns about multicollinearity;
3.) A decision tree approach, which evaluates interactions among predictors in an automated fashion, thus being sensitive to a range of interactions.

APPLYING NEW MACHINE LEARNING ANALYSES TO PREDICT RISK FACTORS FOR ANOREXIA AND BULIMIA NERVOSA: FINDINGS FROM A MULTI-CENTRE EUROPEAN PROJECT