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Our brains can represent expected future states of our sensory environment. Recent work

has shown that, when we expect a specific stimulus to appear at a specific time, we can

predictively generate neural representations of that stimulus even before it is physically

presented. These observations raise two exciting questions: Are pre-activated sensory

representations used for perceptual decision-making? And, do we transiently perceive an

expected stimulus that does not actually appear? To address these questions, we propose

that pre-activated neural representations provide sensory evidence that is used for

perceptual decision-making. This can be understood within the framework of the Diffusion

Decision Model as an early accumulation of decision evidence in favour of the expected

percept. Our proposal makes novel predictions relating to expectation effects on neural

markers of decision evidence accumulation, and also provides an explanation for why we

sometimes perceive stimuli that are expected, but do not appear.

© 2020 Elsevier Ltd. All rights reserved.
We are able to predictively generate neural representations of

expected future events.Whenwe expect a specific stimulus to

appear at a specific time, neural representations of that

stimulus are activated at least 70e90 ms earlier compared to

when the same stimulus is physically presented, but not ex-

pected. Using multivariate decoding applied to time-resolved

human MEG/EEG, pre-activation has been demonstrated

using probabilistic cueing of visual stimuli (Kok et al., 2017;

Aitken et al., 2020), entrainment of expectations according to

the trajectory of apparent motion (Blom et al., 2020; Robinson

et al., 2020), and structured auditory sequences (Demarchi

et al., 2019). These pre-activated neural representations may

be enacted via proactive increases in the response gain of

feature-selective neurons that are responsive to the expected
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stimulus (Kok et al., 2014; Myers et al., 2015; Trapp et al., 2016),

similar to mechanisms thought to underlie visual imagery

(Dijkstra et al., 2018; Robinson et al., 2020). Indeed, such

expectation-related effects have been conceptualised as a

form of ‘involuntary imagery’ whereby a neural representa-

tion of the expected stimulus is automatically generated

following an associated cue stimulus (Pearson, 2019).

Although expectation related pre-activation and imagery are

hypothesized to be enacted via similar mechanisms, we treat

each as distinct phenomena in this paper.

These findings raise intriguing questions about the role of

pre-activated sensory representations in perceptual decision-

making and conscious experience. Do pre-activated repre-

sentations influence our perceptual decision-making? And:
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when we expect to see one thing and something else appears

instead, do we transiently perceive the expected (and pre-

activated) sensory representation? To attempt to address

these questions, we propose that pre-activated neural repre-

sentations are utilised as sensory evidence in favour of the

expected stimulus, which in turn influences the accumulation

of decision evidence as conceptualised in evidence accumu-

lation models such as the Diffusion Decision Model (DDM,

Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff et al., 2016).

This early source of sensory evidence can potentially account

for effects of biased expectations on measures of response

times (RTs) and choice proportions in discrete choice decision

tasks. It also leads to novel hypotheses relating to neural

correlates of evidence accumulation in these tasks. By casting

perception as a type of decision, our proposal also offers an

explanation for why we sometimes perceive expected stimuli

that do not actually appear.
1. Pre-activated sensory representations as a
source of decision evidence

The DDMand similar evidence accumulationmodels partition

perceptual decision-making into multiple serial processes.

These models can successfully account for complex patterns

of RT distributions and choice proportions across a broad

range of decision-making tasks, based on a small number of

variable model parameters (Ratcliff et al., 2016; Ratcliff &

McKoon, 2008; Smith, 2016). According to the DDM, there is a

(usually fixed) latency between the physical presentation of a

stimulus and the conversion of sensory input into a repre-

sentation that is used for decision-making. This lag is here

termed the sensory encoding duration. For discrete choice

decisions, sensory evidence in favour of each decision

outcome is then gradually accumulated in a noisy fashion.

The balance of evidence favouring each option over time can

be represented by the trajectory of a hypothetical decision

variable (depicted in Fig. 1). When the decision variable rea-

ches a set threshold associated with a particular decision

outcome, the motor action required to report that decision is

initiated.

We propose that pre-activated sensory representations

contribute an early source of sensory information that is uti-

lised as decision evidence, which onsets at least 70e90 ms

prior to the evidence that is provided by the physical presen-

tation of a stimulus. This early accumulation of evidence is

captured by standard versions of the DDM as a systematic

shift in the starting point of evidence accumulation toward

the threshold corresponding to the expected stimulus

(depicted in Fig. 1; e.g., van Ravenzwaaij et al., 2012; Mulder

et al., 2012), a shift in the evidence accumulation rate (i.e.,

the drift rate; Hanks et al., 2011; Yon et al., 2020), or a combi-

nation of both effects (e.g., Dunovan et al., 2014; Kelly et al.,

2020). Exactly which effects are observed may depend on

how pre-activated sensory evidence is integrated with sub-

sequent stimulus-driven sensory input (discussed below, see

also Ratcliff et al., 2016). Our account specifically focuses on

the role of pre-activated sensory representations within the

broader framework of expectation effects proposed in

Summerfield and de Lange (2014).
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Importantly, the influence of the resulting changes in

starting point and/or drift rate are hypothesised to be much

weaker than the influence of sensory evidence provided by

above-threshold stimuli in typical psychophysical experi-

ments. This assumption is based on observations that the

magnitudes of pre-activated representations as measured

using MEG/EEG are much smaller than the corresponding

stimulus-evoked responses (Kok et al., 2017; Blom et al., 2020).

This means that the behavioural and perceptual conse-

quences of pre-activated sensory representations are highly

dependent on the stimuli that are subsequently presented.

When stimuli are clearly discriminable, the reported percept

will be largely determined by the stimulus, and response

times will be faster on average for expected stimuli (e.g.,

Mulder et al., 2012; Dunovan et al., 2014, Fig. 1 left panel). Pre-

activation may also lead to an earlier perceived onset of sen-

sory events and altered judgements of event durations (e.g.,

Haggard et al., 2002; Press et al., 2014), however this idea re-

mains speculative. In situations where stimuli are highly

ambiguous, or no decision-relevant evidence is present in the

stimulus, the threshold crossed by the decision variable will

be more influenced by time-varying noise that occurs during

the accumulation of decision evidence. In these instances, the

starting point shift associated with pre-activated sensory

representations will more frequently bias perceptual reports

toward the expected percept (e.g., de Lange et al., 2013, Fig. 1

right panel). Observers will also exhibit faster RTs on

averagewhen reporting stimuli that were expected, compared

to those that were unexpected. More generally, effects of pre-

activated representations on observed choice proportions will

depend on the relative quality of stimulus-driven sensory

evidence compared to the combined magnitudes of internal

and external noise in the decision process (for discussion of

these concepts see Ratcliff et al., 2018; Turner et al., 2020).

Here we have assumed that pre-activated representations

as measured using MEG/EEG co-occur with increased pre-

stimulus firing rates of feature-selective neurons that prefer

the expected stimulus, as found in paired association learning

tasks (Sakai & Miyashita, 1991; Erickson & Desimone, 1999;

Schlack & Albright, 2007; reviewed in Albright, 2012). These

firing rate increases are presumably treated in the same way

as stimulus-driven sensory input by downstream decision-

making circuits. How pre-activated sensory representations

are combined with subsequent stimulus-driven sensory input

likely depends on how decision-relevant sensory information

is integrated over time. Contemporary implementations of the

DDM specify a process whereby sensory input is temporally

integrated to form a representation in visual short-term

memory, which determines the (average) drift rate within a

trial (see Smith et al., 2004, 2013; Ratcliff et al., 2016). This is

akin to models which specify that the drift rate smoothly in-

creases over time and reaches an asymptote within the

duration of the temporal integration window (e.g., Smith &

Lilburn, 2020). The length of the temporal integration win-

dow depends on the decision-relevant stimulus features. In

stimulus brightness discrimination tasks drift rates increased

with longer presentation durations up to approximately

100 ms (Ratcliff, 2002), whereas the integration window was

estimated to be around 400e450 ms for dot motion discrimi-

nation tasks (Watamaniuk& Sekuler, 1992, reviewed in; Smith
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Fig. 1 e Schematic examples of how pre-activation may induce shifts in the starting point of evidence accumulation, with

different consequences depending on the stimulus that is subsequently presented. When strong sensory evidence for a

decision is provided by the stimulus, fulfilled expectations lead to earlier decisions and faster responses (top panel). When

stimuli are highly ambiguous or do not provide decision-relevant sensory evidence, expectations lead to larger biases in

choice proportions (bottom panel).
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& Lilburn, 2020). Whether pre-activation leads to observed

starting point or drift rate changes may depend on the stim-

ulus presentation duration relative to the length of the tem-

poral integration window. In conditions whereby the

presentation duration is shorter than the integration window

(e.g., as in Yon et al., 2020), pre-activated sensory represen-

tations may increase drift rates by mimicking effects of an

earlier onset and prolonged presentation of the stimulus. In

situations where the presentation duration exceeds the inte-

gration window the drift rate would be largely determined by

the stimulus, and an earlier onset of evidence accumulation

would be reflected in a starting point shift (e.g., Mulder et al.,

2012). Findings of expectation-related adjustments to start-

ing points and/or drift rates are inconsistent across studies
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(Dunovan et al., 2014; Mulder et al., 2012; van Ravenzwaaij

et al., 2012; Yon et al., 2020) and more systematic investiga-

tion is required to understand the situations in which each

type of bias can be detected.

Three testable hypotheses can be derived from our pro-

posal. Evidence accumulation dynamics have been traced

using the centro-parietal positivity (CPP) event-related po-

tential component (O’Connell et al., 2012), where the shape of

this component appears to faithfully trace the trajectory of the

hypothesised decision variable in the DDM (Twomey et al.,

2016; Kelly et al., 2020). Our account predicts that the onset

of CPP amplitude build-up will be earlier in conditions where

strong expectations can be formed for a specific stimulus

image appearing at a specific time, compared to conditions
f sensory representations as a source of evidence in perceptual
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where such expectations cannot be formed. There is already

some evidence to support this hypothesis; earlier CPP build-up

onset latencies have been observed for stimuli with predict-

able onset times (Van Den Brink et al., 2020). Further testing

this hypothesis would require manipulations of whether or

not image-specific expectations can be formed for upcoming

stimuli, for example by including uninformative cue condi-

tions (e.g., de Lange et al., 2013; Kelly et al., 2020).

The magnitude or presence/absence of pre-activated sen-

sory representations is also likely to vary across trials,

concurrentlywith fluctuations in theweighting of an observer’s

expectations (e.g., Meyniel et al., 2016). Based on this assump-

tion, we would predict that this variability should correlate

with variation in the magnitude of starting point or drift rate

biases as captured in the DDM. When using linear decoding

algorithms such as Linear Discriminant Analysis (LDA), the

decision value (i.e., the distance from the discriminant axis

which separates stimulus categories, not to be confused with

the decision variable in the DDM) may provide a suitable corre-

late of the strength of pre-activated neural representations

across trials. If pre-activated sensory representations do bias

decision-making, then we would predict starting point or drift

rate biases in the DDM to correlate with LDA-derived decision

values at time windows during which pre-activated neural

representations are detected. Notably, this approach has

already been successfully used to predict evidence accumula-

tion model parameters based on stimulus-evoked neural re-

sponses (Grootswagers et al., 2017; Ritchie & Carlson, 2016).

Pre-activation as measured using MEG/EEG has so far been

reported exclusively in experiments where the expected stim-

uli were attended and task-relevant, had predictable onset

times, and had specific features that were predictable (such as

orientation or location, e.g., Kok et al., 2017; Blom et al., 2020;

Aitken et al., 2020; but see the fMRI study by Ekman et al., 2017).

If pre-activation is enabled via attention-based mechanisms

that act on stimulus-selective visual neurons, then our account

would also predict that the corresponding electrophysiological

effects would be diminished or abolished when attention is

directed away from the critical stimuli (e.g., as done by Larsson

& Smith, 2012) or when specific stimulus image properties

cannot be predicted in advance (e.g., as in Bang & Rahnev,

2017). Experiments that manipulate the focus of attention and

the feature-specificity of participants’ expectations may better

characterise how pre-activated representations are generated

in the visual system.

Pre-activated sensory representations might also explain

choice repetition biases (a type of sequential effect) in discrete

choice decisions tasks. Bode et al. (2012) recorded EEG during a

piano/chair discrimination task and identified a period of pre-

stimulus activity that was predictive of participants’ percep-

tual decisionswithin the same trial. This decodable EEG activity

co-occurred with a shift of the starting point of evidence

accumulation in favour of the stimulus category that was re-

ported in the previous trial. Interestingly, they found that this

activity was only predictive of participants’ choices in condi-

tions with highly ambiguous, ‘pure noise’ stimuli, and not

when decision-relevant information was present in the stim-

ulus. However, it remains to be verified whether this decodable

information corresponds to a pre-activation of stimulus cate-

gory representations in visual cortex, which might also lead to
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choice history-dependent biases in evidence accumulation

rates (Urai et al., 2019), orwhether this activity reflects biases in

neural activity that correspond to downstream decision-

making processes (e.g., de Lange et al., 2013).

Experiments designed to test these hypotheses should be

careful to dissociate expectations to see a particular stimulus

from expectations tomake themotor action required to report

the appearance of the expected stimulus. When a stimulus

image is consistently associated with the same motor

response, as in many previous experiments (reviewed in Gold

& Stocker, 2017), building activity in motor cortex can be

detected prior to stimulus onset, which can also influence

decision-making performance in ways that are consistent

with starting point shifts (de Lange et al., 2013; Donner et al.,

2009; Kelly et al., 2020). Dissociation between stimulus and

motor expectations can be achieved by randomising the

motor response associatedwith each decision outcome across

trials (e.g., Bode et al., 2012). Stimulus expectations should

also be experimentally dissociated from effects of recent

stimulation history, such as stimulus repetition or adaptation

effects (e.g., Kohn, 2007; Patterson et al., 2013). Stimulation

history effects are often present in designs whereby expec-

tations are entrained based on the frequency of stimulus

presentation (discussed in Feuerriegel et al., 2020).

Effects of pre-activation may also be conceptually related to

imagery-induced perceptual biases as reported in binocular

rivalry tasks. Across several experiments run by Pearson et al.

(2008) participants were biased toward perceiving those stim-

uli that were imagined during a preceding interval. These ef-

fects of imagery appeared similar to effects of presenting a

weak, low-contrast stimulus prior to the binocular rivalry

stimuli, however this link remains speculative. Effects of im-

agery persisted over multiple-second intervals in their experi-

ments, and also across an intervening letter discrimination

task. It is unclear whether such long-lasting biases would arise

from pre-activation associatedwith stimulus expectations. It is

plausible that both expectation- and imagery-related repre-

sentations in visual cortex are enacted via the same mecha-

nism, which affects the response gain of stimulus-selective

neurons (Pearson, 2019). Interestingly, both expectation and

imagery appear to produce higher-level representations before

low-level ones, showing an opposite time-course to stimulus-

driven visual processing (Kok et al., 2017; Blom et al., 2020;

Dijkstra et al., 2018). However, given that expectations and

imagery are each are associated with a different phenomenol-

ogy, more work is needed to characterise the similarities and

differences between the extended networks associated with

each effect (discussed in Pearson, 2019).

Here, we note that our proposed model is designed to ac-

count for the hypothesised consequences of a specific phe-

nomenon (pre-activated neural representations of expected

sensory events) within discrete choice perceptual decision

tasks, whereby a single decision-relevant stimulus is pre-

sented to an observer. Accordingly, this model should not be

viewed as a general framework that encapsulates the diverse

range of expectation-related effects that have been reported

in the literature. For example, cue stimuli have been found to

bias perceptual reports in binocular rivalry tasks toward the

expected percept for simple stimuli such as oriented gratings

(Denison et al., 2011). However, reportswere biased away from
f sensory representations as a source of evidence in perceptual
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the expected percept in statistical learning tasks with more

complex face, object and scene stimuli (Denison et al., 2016).

Similarly, when objects were presented in a visual scene (such

as a cup in a kitchen) the detection of this object was impaired

in a change detection task when the object could be expected

to be presentwithin that scene (Spaak et al., 2020). In addition,

the expectedness of a stimulus identity also appears to

modulate the perceived brightness of a subsequently-

presented stimulus, with either reductions or increases in

perceived brightness depending on the stimulus presentation

latency following the expected or surprising event (Yon &

Press, 2017). More generally, sensory stimuli appear to be re-

ported as less intense when that stimulus was expected,

compared to when it was surprising (reviewed in Press et al.,

2020). These effects have largely been reported in different

stimulation contexts than those of typical discrete choice

decision tasks that are modelled using the DDM. They also

describe effects on different measures (such as subjective

stimulus intensity) that are not captured by the DDM, except

when additional assumptions aremade that link ameasure of

interest to the decision-making process. We caution that our

model does not account for this broader range of expectation

effects, and it is not designed to do so.
2. Why we do not typically perceive
expected stimuli that fail to appear

By casting perception as a type of decision, our account can

also explain why we do not typically perceive stimuli that

were expected but never presented to us. The pre-activated

representation on its own is not sufficient to shift the deci-

sion variable to the threshold necessary to produce a

conscious percept, and the path of the decision variable is

subsequently largely determined by the influence of the

(physically presented) stimulus. This idea is congruent with

the findings of Pereira et al. (2020) who reported that near-

threshold tactile stimuli were only perceived after a fixed

amount of decision evidence had been accumulated.

These separable contributions of pre-activation and subse-

quent stimulation are analogous to the notions of prediction

and postdiction in various motion-related illusions, most

notably the flash-lag illusion (Nijhawan, 1994; Eagleman &

Sejnowski, 2000). In this illusion, the position of a moving ob-

ject is perceived to lead a physically aligned static flash e an

overshoot which has been attributed to predictive motion

extrapolation (Nijhawan, 1994). However, the illusion is elimi-

nated when the moving object disappears concurrently with

the flash (Eagleman& Sejnowski, 2000). This pattern of findings

fits with our proposal because pre-activation accelerates the

perception of the moving object, leading to motion extrapola-

tion, but only when sensory input that is consistent with the

extrapolation is subsequently available (e.g., Fig. 1, left panel).

When the expected sensory input fails to arrive, pre-activation

alone is insufficient to drive a conscious percept. Interestingly,

our proposal predicts that in situations with highly noisy or

ambiguous stimuli, this pre-activation may manifest as a de-

cision bias in favour ofmotion extrapolation (Fig. 1, right panel).

This is consistentwith recent findings that the flash-lag illusion

persists when the moving object disappears concurrently with
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the flash in cases where both are presented on a background of

dynamic noise (Nakayama & Holcombe, 2020).

Here we note that there is an important distinction between

alterations in conscious perception and biases in choice pro-

portions as measured in psychophysical experiments. In some

tasks whereby participants must choose between two or more

discrete choice options, one could plausibly observe biased

choice proportions that partly reflect ‘best guesses’ in favour of

the expected ormore probable stimulus, rather than assertions

that the participant had subjectively perceived that stimulus.

Therefore, measures of biased choice proportions may repre-

sent an upper bound on the frequency with which an observ-

er’s conscious perception was biased by their expectations.

Additional measurements of subjective awareness or decision

confidence may be useful in these situations. However the re-

lationships between these measures and conscious perception

are not straightforward (discussed in Peters & Lau, 2015).
3. Conclusion

We have argued that the consequences of pre-activated sen-

sory representations can be potentially accounted for using

mathematically-formalised evidence accumulation model

frameworks. Testing the hypotheses derived from our pro-

posal will allow us to better understand how prior knowledge

can influence our perception and decision-making, and how

these influences affect downstream computations that are

critical for perceptual decision-making (e.g., Gold & Stocker,

2017; Summerfield & de Lange, 2014). More concretely speci-

fying how we can bias our own perceptual decisions may also

inform wider philosophical debates regarding qualitative and

quantitative differences between perception and hallucina-

tion (discussed in Dorsch, 2016; Corlett et al., 2019).
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